Adversarial and Clean Data Are Not Twins

نویسندگان

  • Zhitao Gong
  • Wenlu Wang
  • Wei-Shinn Ku
چکیده

Adversarial attack has cast a shadow on the massive success of deep neural networks. Despite being almost visually identical to the clean data, the adversarial images can fool deep neural networks into wrong predictions with very high confidence. In this paper, however, we show that we can build a simple binary classifier separating the adversarial apart from the clean data with accuracy over 99%. We also empirically show that the binary classifier is robust to a secondround adversarial attack. In other words, it is difficult to disguise adversarial samples to bypass the binary classifier. Further more, we empirically investigate the generalization limitation which lingers on all current defensive methods, including the binary classifier approach. And we hypothesize that this is the result of intrinsic property of adversarial crafting algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascade Adversarial Machine Learning Regularized with a Unified Embedding

Deep neural network classifiers are vulnerable to small input perturbations carefully generated by the adversaries. Injecting adversarial inputs during training, known as adversarial training, can improve robustness against one-step attacks, but not for unknown iterative attacks. To address this challenge, we propose to utilize embedding space for both classification and low-level (pixel-level)...

متن کامل

Adversarial Phenomenon in the Eyes of Bayesian Deep Learning

Deep Learning models are vulnerable to adversarial examples, i.e. images obtained via deliberate imperceptible perturbations, such that the model misclassifies them with high confidence. However, class confidence by itself is an incomplete picture of uncertainty. We therefore use principled Bayesian methods to capture model uncertainty in prediction for observing adversarial misclassification. ...

متن کامل

Adversarial Machine Learning at Scale

Adversarial examples are malicious inputs designed to fool machine learning models. They often transfer from one model to another, allowing attackers to mount black box attacks without knowledge of the target model’s parameters. Adversarial training is the process of explicitly training a model on adversarial examples, in order to make it more robust to attack or to reduce its test error on cle...

متن کامل

Ularized with a Unified Embedding

Injecting adversarial examples during training, known as adversarial training, can improve robustness against one-step attacks, but not for unknown iterative attacks. To address this challenge, we first show iteratively generated adversarial images easily transfer between networks trained with the same strategy. Inspired by this observation, we propose cascade adversarial training, which transf...

متن کامل

A clean slate design for secure wireless ad-hoc networks - Part 1: Closed synchronized networks

We propose a clean-slate, holistic approach to the design of secure protocols for wireless ad-hoc networks. We design a protocol that enables a collection of distributed nodes to emerge from a primordial birth and form a functioning network. We consider the case when nodes are synchronized and the network is closed, in that no other nodes can join. We define a game between protocols and adversa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.04960  شماره 

صفحات  -

تاریخ انتشار 2017